Focus Technique

SiMOOD: Evolutionary Testing Simulation with Out-Of-Distribution Images

Raul Sena Ferreira, Joris Guerin,
Jérémie Guiochet, Hélène Waeselynck
13 January 2023
This talk is divided into two parts

- **Scientific context**
 Motivation, solution architecture, results, and limitations

- **Reproducibility instructions**
 Code repository, installing CARLA simulator, installing SimOOD and its dependencies, troubleshooting
Deep learning (DL) techniques can be wrong in their predictions even with 100% confidence [1] => Potentially leading to hazardous situations in cyber-critical systems

Dependability-ensuring techniques, such as fault tolerance, can be applied => Safety monitors (SM) keep the system in a safe state despite hazardous situations [2]

Such monitors aim to detect out-of-distribution (OOD) images at runtime:
- All data that falls outside of the expect i.i.d* assumption can be considered as OOD data
- OOD data is considered a major threat for image classifiers and object detectors

* independent and identically distributed data => the same probability distribution as the others and all are mutually independent
Out-of-distribution data

There are five main types of OOD characteristics that can come on images at runtime:

- Noise [9],
- Distributional-shifts [8],
- Novelty classes [6],
- Anomalies [10],
- Adversarial inputs [7]

Recent works focus on data-based monitors for DL:

=> Data-based SM is generally built from the same training data used to build the DL model.
Data-based ML monitors fall in 3 categories:
- Observation of the inputs of the DL model [3]
- Observation of the intermediate layers of the DL model [4]
- Observation of the output (decision) from the DL model [5]

Similar to uncertainties inherent to the use of ML, the confidence in such SM is an open issue:
- Testing them in a perception system cannot be reduced to measuring ML performances on a dataset but rely on the images captured by the system at runtime
- However, the amount of time spent to generate diverse test cases during a simulation of perception components can grow quickly since it is a combinatorial optimization problem.
SiMOOD overview

- **Generation**: it performs the task of finding combinations of OOD perturbations with a GA
- **Simulation**: it takes the selected individuals and apply them to each frame of the simulation
- **Evaluation**: it yields processing time, memory, hazards and ML metrics

[Diagram showing the process of generation, simulation, and evaluation]
We applied 15 categories of OOD perturbations [15],[16], [17], each one with its own levels of intensity ("no effect" included), totaling 175 different OOD perturbations.
Robustness of SiMOOD regarding its parameters

Unique individuals per ω, generated across all variations of generations and population size (440 individuals).

TABLE II: Number of unique genes in the selected population.

<table>
<thead>
<tr>
<th>Generations</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>7 (35%)</td>
<td>16 (40%)</td>
<td>34 (57%)*</td>
<td>59 (59%)*</td>
</tr>
<tr>
<td>20</td>
<td>8 (40%)*</td>
<td>20 (50%)*</td>
<td>28 (47%)</td>
<td>48 (48%)</td>
</tr>
<tr>
<td>30</td>
<td>6 (30%)</td>
<td>5 (12%)</td>
<td>26 (43%)</td>
<td>42 (42%)</td>
</tr>
<tr>
<td>50</td>
<td>6 (30%)</td>
<td>7 (17%)</td>
<td>19 (31%)</td>
<td>32 (32%)</td>
</tr>
</tbody>
</table>

TABLE III: Number of hazards.

<table>
<thead>
<tr>
<th>Generations</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9 (90%)</td>
<td>11 (55%)</td>
<td>12 (40%)</td>
<td>12 (24%)</td>
</tr>
<tr>
<td>20</td>
<td>6 (60%)*</td>
<td>20 (100%)*</td>
<td>23 (77%)</td>
<td>21 (42%)</td>
</tr>
<tr>
<td>30</td>
<td>10 (100%)*</td>
<td>20 (100%)*</td>
<td>30 (100%)*</td>
<td>25 (50%)</td>
</tr>
<tr>
<td>50</td>
<td>10 (100%)*</td>
<td>20 (100%)*</td>
<td>15 (50%)</td>
<td>23 (46%)</td>
</tr>
</tbody>
</table>
Hazards uncovered by applying single OOD perturbations

a) Crash due to a fallen tree not detected by the ML model
b) A false detection provoked by condensed water on the camera lens
c) Crash with a pedestrian when exposing the ML model to heavy smoke
Hazards uncovered by combining OOD perturbations

- When one of these combinations happens alone (sub-figures a) and b)), the ML model can correctly detect the pedestrian.
- However, the combination of both, even with a lower intensity, can be enough to lead to a hazard.
The order of the perturbations also matters:
- Same perturbations combined in a different order produce subtle differences in the image.
SiMOOD applies perturbations on high-resolution images (1280x720)

- it is necessary an extra amount of memory (2.7 GB) to perform the task

SiMOOD can be optimized to perform better processing and consume less memory

- By performing parallelization and data compression

TABLE IV: Comparison of processing time and memory.

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Time (with SiMOOD)</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>101.94</td>
<td>123.10</td>
<td>20.75%</td>
</tr>
<tr>
<td>Memory</td>
<td>3975.58</td>
<td>6708.09</td>
<td>68.73%</td>
</tr>
</tbody>
</table>
Usage details

Installation is divided in two parts

- CARLA simulator: tested with “carla-0.9.11-py3.7-linux-x86_64.egg” for Linux
- SimOOD: dependencies can be installed with “pip install -r requirements”

SimOOD can be used for two purposes

- Offline: search for OOD perturbations that may lead to hazards during the simulation
- Online: simulate scenarios with specific OOD perturbations or combination of perturbations

Limitations

- We tested just one type of state-of-the-art object detector (YOLO v6)
- At least 16MB of memory available
- Variations over a fixed scenario (case study)
Live interaction time!

https://github.com/raulsenaferreira/SiMOOD
References

References

Thank you

Email:
rsenaferre@laas.fr
raul.ferreira@continental.com

Project repository:
https://github.com/raulsenaferreira/SiMOOD