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This talk is divided into two parts
2

◻ Scientific context
Motivation, solution architecture, results, and limitations 

◻ Reproducibility instructions
Code repository, installing CARLA simulator, installing SimOOD and 
its dependencies, troubleshooting
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Introduction
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Deep learning (DL) techniques can be wrong in their predictions even with 100% confidence [1]  

=> Potentially leading to hazardous situations in cyber-critical systems

Dependability-ensuring  techniques, such as fault tolerance, can be applied
=> Safety monitors (SM) keep the system in a safe state despite hazardous situations [2]

Such monitors aim to detect out-of-distribution (OOD) images at runtime:
◻ All data that falls outside of the expect i.i.d* assumption can be considered as OOD data
◻ OOD data is considered a major threat for image classifiers and object detectors

* independent and identically distributed data => the same probability distribution as the others and all are mutually independent
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Out-of-distribution data
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There are five main types of OOD characteristics that can come on images at runtime
◻ Noise [9], 
◻ Distributional-shifts [8], 
◻ Novelty classes [6], 
◻ Anomalies [10], 
◻ Adversarial inputs [7]

Recent works focus on data-based
monitors for DL
=> Data-based SM is generally built 

from the same training data 
used to build the DL model

4

ANITI, 13 January 2023



Internal

Data-based monitors for DL image classifiers fall in 3 categories:

◻ Observation of the inputs of the DL model [3]

◻ Observation of the intermediate layers of the DL model [4]

◻ Observation of the output (decision) from the DL model [5]

Similar to uncertainties inherent to the use of ML, the confidence in such SM is an open issue
◻ Testing them in a perception system cannot be reduced to measuring ML performances on a

dataset but rely on the images captured by the system at runtime
◻ However, the amount of time spent to generate diverse test cases during a simulation of 

perception components can grow quickly since it is a combinatorial optimization problem

Data-based ML monitors
5
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SiMOOD overview
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◻ Generation: it performs the task of finding combinations of OOD perturbations with a GA

◻ Simulation: it takes the selected individuals and apply them to each frame of the simulation

◻ Evaluation: it yields processing time, memory, hazards and ML metrics
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GA approach
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◻ We applied 15 categories of OOD perturbations [15],[16], [17], each one with its own levels 
of intensity (“no effect” included), totaling 175 different OOD perturbations
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Robustness of SiMOOD regarding its parameters
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Unique individuals per ω, generated across all variations of generations and population size (440 individuals).
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Hazards uncovered by applying single OOD perturbations
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a) Crash due to a fallen tree not detected by the ML model
b) A false detection provoked by condensed water on the camera lens
c) Crash with a pedestrian when exposing the ML model to heavy smoke
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Hazards uncovered by combining OOD perturbations
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◻ When one of these combinations happens alone (sub-figures a) and b)), the ML model can 
correctly detect the pedestrian

◻ However, the combination of both, even with a lower intensity, can be enough to lead to a 
hazard
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OOD perturbations in different order with different 
outcomes

The order of the perturbations also matters: 
- Same perturbations combined in a different order produce subtle differences in the image
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Processing time and memory

❏ SiMOOD applies perturbations on high-resolution images (1280x720)

○ it is necessary an extra amount of memory (2.7 GB) to perform the task 

❏ SiMOOD can be optimized to perform better processing and consume less memory

○ By performing parallelization and data compression

12
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Usage details
13

Installation is divided in two parts

◻ CARLA simulator: tested with “carla-0.9.11-py3.7-linux-x86_64.egg” for Linux

◻ SimOOD: dependencies can be installed with “pip install -r requirements”

SimOOD can be used for two purposes

◻ Offline: search for OOD perturbations that may lead to hazards during the simulation

◻ Online: simulate scenarios with specific OOD perturbations or combination of perturbations

Limitations

◻ We tested just one type of state-of-the-art object detector (YOLO v6)

◻ At least 16MB of memory available

◻ Variations over a fixed scenario (case study)
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Live interaction time!
https://github.com/raulsenaferreira/SiMOOD
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Thank you

Email:

rsenaferre@laas.fr

raul.ferreira@continental.com

Project repository:

https://github.com/raulsenaferreira/SiMOOD
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